Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Symmetry properties of the order parameter are among the most fundamental characteristics of a superconductor. UTe2, which was found to feature an exceedingly large upper critical field and striking reentrant behavior at low temperatures, is widely believed to possess a spin-triplet pairing symmetry. However, unambiguous evidence for such a pairing symmetry is still lacking, especially at zero and low magnetic fields. The presence of an inversion crystalline symmetry in UTe2requires that, if it is indeed a spin-triplet superconductor, the order parameter must be of odd parity. We report here phase-sensitive measurements of the symmetry of the orbital part of the order parameter using the Josephson effect. The selection rule in the orientation dependence of the Josephson coupling between In, ans-wave superconductor, and UTe2suggests strongly that UTe2possesses the odd-parity pairing state of B1usymmetry near zero magnetic field, making it a spin-triplet superconductor. We also report the apparent formation of Andreev surface bound states on the (1−10) surface of UTe2.more » « lessFree, publicly-accessible full text available February 13, 2026
- 
            Free, publicly-accessible full text available February 13, 2026
- 
            Abstract Functional oxides have extensively been investigated as a promising class of materials in a broad range of innovative applications. Harnessing the novel properties of functional oxides in micro‐ to nano‐scale applications hinges on establishing advanced fabrication and manufacturing techniques able to synthesize these materials in an accurate and reliable manner. Oxidative scanning probe lithography (o‐SPL), an atomic force microscopy (AFM) technique based on anodic oxidation at the water meniscus formed at the tip/substrate contact, not only combines the advantages of both “top‐down” and “bottom‐up” fabrication approaches, but also offers the possibility of fabricating oxide nanomaterials with high patterning accuracy. While the use of self‐assembled monolayers (SAMs) broadened the application of o‐SPL, significant challenges have emerged owing to the relatively limited number of SAM/solid surface combinations that can be employed for o‐SPL, which constrains the ability to control the chemistry and structure of oxides formed by o‐SPL. In this work, a new o‐SPL technique that utilizes room‐temperature ionic liquids (RTILs) as the functionalizing material to mediate the electrochemistry at AFM tip/substrate contacts is reported. The results show that the new IL‐mediated o‐SPL (IL‐o‐SPL) approach allows sub‐100 nm oxide features to be patterned on a model solid surface, namely steel, with an initiation voltage as low as −2 V. Moreover, this approach enables high tunability of both the chemical state and morphology of the patterned iron oxide structures. Owing to the high chemical compatibility of ILs, which derives from the possibility of synthesizing ILs able to adsorb on a wide variety of solid surfaces, IL‐o‐SPL can be extended to other material surfaces and provide the opportunity to accurately tailor the chemistry, morphology, and electronic properties within nanoscale domains, thus opening new pathways to the development of novel micro‐ and nano‐architectures for advanced integrated devices.more » « less
- 
            In this work, we perform atomic force microscopy (AFM) experiments to evaluate in situ the dependence of the structural morphology of trihexyltetradecylphosphonium bis(2-ethylhexyl) phosphate ([P 6,6,6,14 ][DEHP]) ionic liquid (IL) on applied pressure. The experimental results obtained upon sliding a diamond-like-carbon-coated silicon AFM tip on mechanically polished steel at an applied pressure up to 5.5 ± 0.3 GPa indicate a structural transition of confined [P 6,6,6,14 ][DEHP] molecules. This pressure-induced morphological change of [P 6,6,6,14 ][DEHP] IL leads to the generation of a lubricious, solid-like interfacial layer, whose growth rate increases with applied pressure and temperature. The structural variation of [P 6,6,6,14 ][DEHP] IL is proposed to derive from the well-ordered layering of the polar groups of ions separated by the apolar tails. These results not only shed new light on the structural organization of phosphonium-based ILs under elevated pressure, but also provide novel insights into the normal pressure-dependent lubrication mechanisms of ILs in general.more » « less
- 
            When managing wide-area networks, network architects must decide how to balance multiple conflicting metrics, and ensure fair allocations to competing traffic while prioritizing critical traffic. The state of practice poses challenges since architects must precisely encode their intent into formal optimization models using abstract notions such as utility functions, and ad-hoc manually tuned knobs. In this paper, we present the first effort to synthesize optimal network designs with indeterminate objectives using an interactive program-synthesis-based approach. We make three contributions. First, we present comparative synthesis, an interactive synthesis framework which produces near-optimal programs (network designs) through two kinds of queries (Validate and Compare), without an objective explicitly given. Second, we develop the first learning algorithm for comparative synthesis in which a voting-guided learner picks the most informative query in each iteration. We present theoretical analysis of the convergence rate of the algorithm. Third, we implemented Net10Q, a system based on our approach, and demonstrate its effectiveness on four real-world network case studies using black-box oracles and simulation experiments, as well as a pilot user study comprising network researchers and practitioners. Both theoretical and experimental results show the promise of our approach.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
